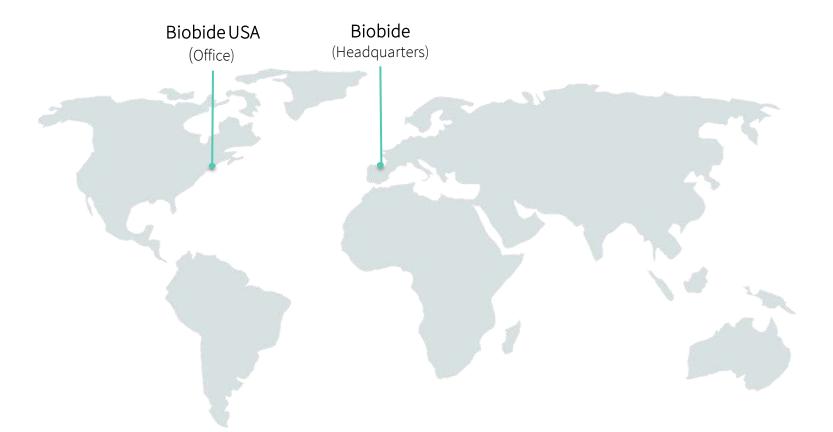


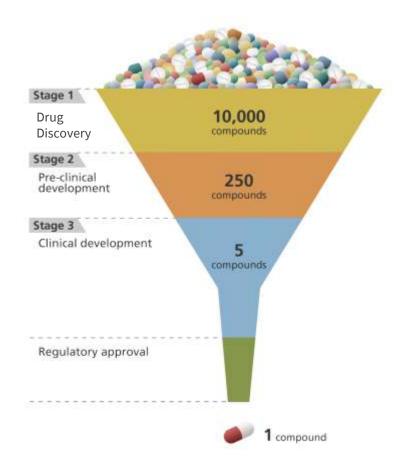
Le modèle «**Zebrafish**», un outil innovant pour l'évaluation de la toxicité humaine et l'écotoxicité

Iñaki Iturria, Ph.D.



Congrès Annuel de la Société Française de Toxicologie

Lille, 27 & 28 Novembre 2018


www.biobide.com

Biobide is a Contract Research Organization (CRO) with more than 13 years of experience specialized in the zebrafish animal model, offering TAILOR-MADE pre-clinical services to Pharmaceutical, Biotech, Chemical, Cosmetic and Nutraceutical companies worldwide under Good Laboratory Practices (GLPs) environment and 3Rs principles (Refinement, Reduction and Replacement of animals.)

Pourquoi le Poisson Zèbre?

- The number of new compounds in pharma, chemical and agrochemical industries' early discovery is constantly increasing as is increasing the need for risk reducing time- and cost-effective toxicity screening methods.
- There is a need to reduce the number of animals and time required to screen this large number of chemicals.

Experimental models

In vitro

Invertebrates

Cost	€	€€	
Capacity	+++++	+++	
Biologic Relevance	+	+	

241h

Mammals Clinical Trials

€€€€	€€€€€
++	+
++++	+++++

Experimental models

	In vitro	Invertebrates	Zebrafish	Mammals	Clinical Trials
Cost	€	€€	€€	€€€€	€€€€€
Capacity	+++++	+++	+++	++	+
Biologic Relevance	+	+	+++	++++	+++++
]	
		3Rs: Replac	cement, Reduction	Refinement	

Zebrafish

Name:	Danio rerio		
Family:	Cyprinidae	0	
Origin:	Southeast Asia		
Diet:	Omnivorous	the second second	
Size:	4 cm long		
Lifespan:	Up to 3 years		

- First studies in **developmental biology and genetic** research in the **1970**'s by Dr. Streisinger (University of Oregon).
- The Zebrafish reference genome was published in 2013.
- Nowadays, this **vertebrate model** is widely used in many research fields such as **pharmacology, toxicology, and environmental sciences**.

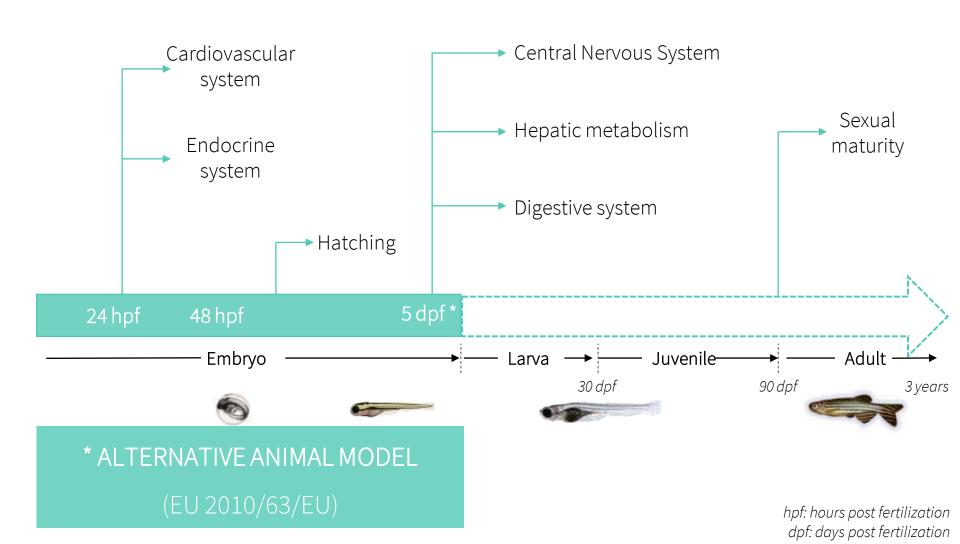
Cost-efficient

Zebrafish Biological Model

- Small size
- High fecundity
 - Rapid Development
 - Low Housing cost


Vertebrate Model

- Similarities in major organs and tissues
- Genome sequenced
- High genetic homology
- Transgenic disease models


High-throughput

High- content

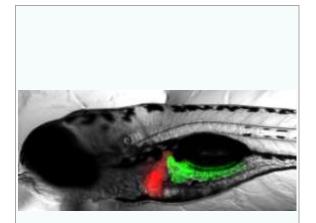
- Transparent embryos
- Fluorescent reporters
- Phenotypic screening
- Multi-well format

Zebrafish Developmental Process

Zebrafish Embryo Biotransformation Capacity

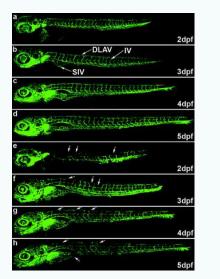
- 86 CYP genes grouped in 17 families¹
- Metabolic activity starts in early fish stages²
 - Phase I: CYP1, esterase, Adh and Aldh have activity from 2.5 hpf
 - Phase II: Gst and Nat have activity from 48 hpf
- Biotransformation of environmental pollutant
 - ✓ <u>Polycyclic aromatic hydrocarbons (PAH): CYP1A</u>, CYP1B & CYP1C induction through PAH binding to aryl hydrocarbon receptors³
 - ✓ <u>Endocrine disruptors:</u> Phase II metabolization of Bisphenol and Benzophenone-2⁴
 - ✓ <u>Pesticides:</u> Transformation of chlorothalonil to more toxic metabolites⁵
 - ✓ <u>Solvents:</u> Transformation of 2-methoxyethanol to methoxyacetic acid²

¹Genome Reference consortium, 2015 ⁴ Le Fol et al. 2017 ² Otte et al. 2017 ⁵ Zhang et al. 2016 ³ Künhert et al. 2017


Zebrafish Transgenic Models

Transgenic induced gene alterations: ZFN, CRISP/Cas9 and TALENs technologies applied in zebrafish model generation.

tg(tg:mCherry) Opitz et al.2012


- mCherry production coupled to thyroglobulin gene expression.
- Concentration-dependent response to thyroid disrupting substances.

tg(fabp10a:DsRed;elaA:gfp)

Zhang et al.2014

- DsRed expression in the liver.
- GFP expression in pancreas.
- Sensitive to hepatotoxicants.

- GFP expression in endothelial cells of blood vessels.
- Useful to angiogenesis studies.

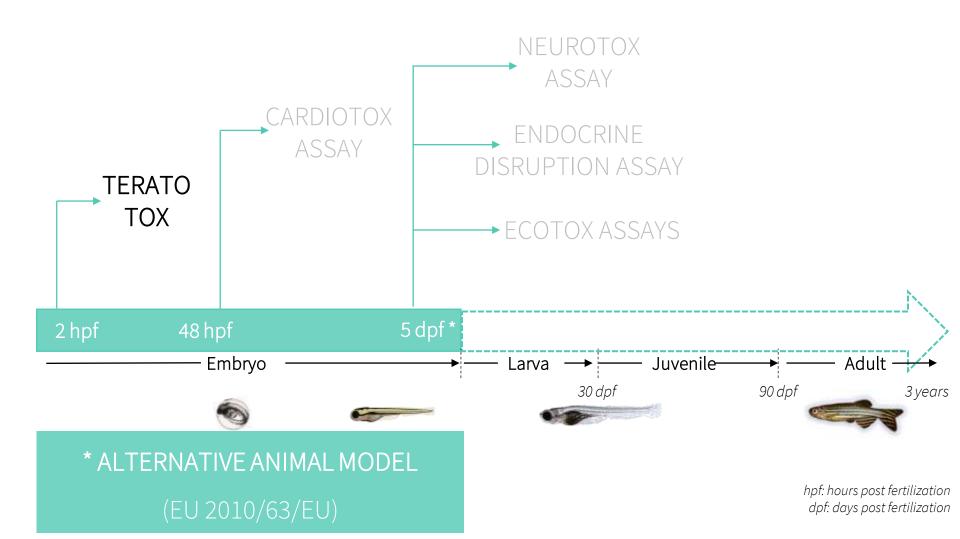
3Rs: Replacement, Reduction, Refinement

Regulation - Zebrafish as alternative model

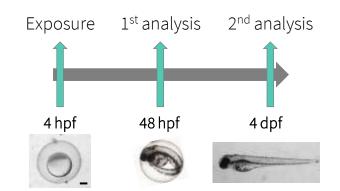
 Several OECD guidelines include zebrafish as a recommended biological model in the risk assessment of chemical compounds:

OECD 203, 210, 212, 229, 236

 EURLS-ECVAM European Union Reference Laboratory for Alternatives to Animal Testing:


Recommendation on the Zebrafish Embryo Acute Toxicity Test Method (ZFET) for Acute Aquatic Toxicity Testing- *July 2014*

Directive 2010/63/EU

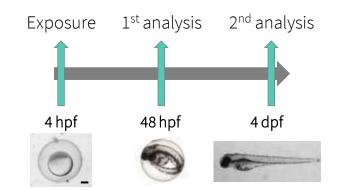

Zebrafish embryos are not considered animals until 5 dpf

Zebrafish Toxicity Assays

Systemic toxicity Teratotox Assay

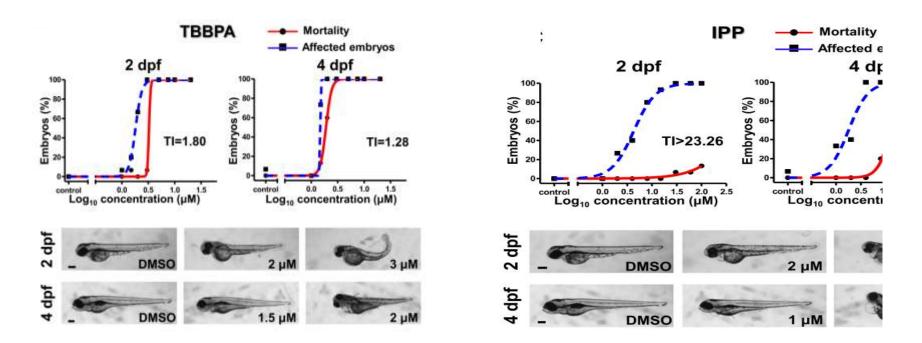
Phenotypic-based screening assay for the evaluation of developmental toxicity.

Morphological endpoints related to the development of major organs and body structures.

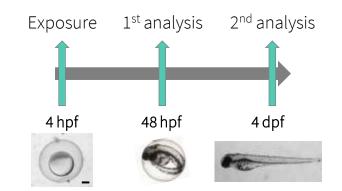

EXPERIMENTAL SETUP

- 24 or 96 wells microplate
- 5 embryos per well, 3 wells per condition
- 8 test concentrations per compound
- Visual observation at 48 and 96 hpf

 LC_{50} , EC_{50} and a Teratogenic Index (TI) (LC50/EC50) are calculated at 2 and 4 dpf


		2dpf	4dpf
Malformation of the head	Jaw morphology		Х
	Microcephaly or abnormal head shape	Х	Х
	Microphthalmia/Cyclopia	х	х
	Edema	х	х
Malformation of the otoliths			x
Malformation of the heart	Edema/irregular shape	x	х
	Abnormal heartbeat	х	х
Deformed body shape	Length	X	X
	Curved/curled	х	х
	Notochord morphology	х	х
	Somite morphology	х	х
Malformation of the tail (including tail fins)		x	X
Yolk deformation	Edema	х	х
	Yolk opacity	х	X
Other		х	x

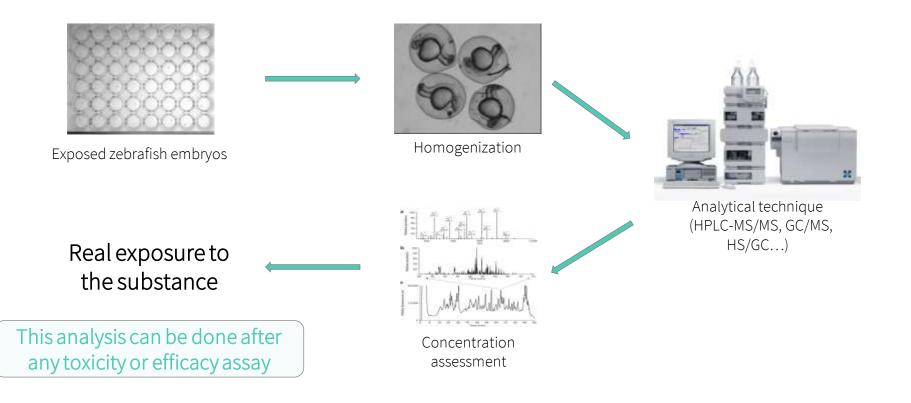
Systemic toxicity Teratotox Assay



Phenotypic-based screening assay for the evaluation of developmental toxicity.

Morphological endpoints related to the development of major organs and body structures.

Systemic toxicity Teratotox Assay

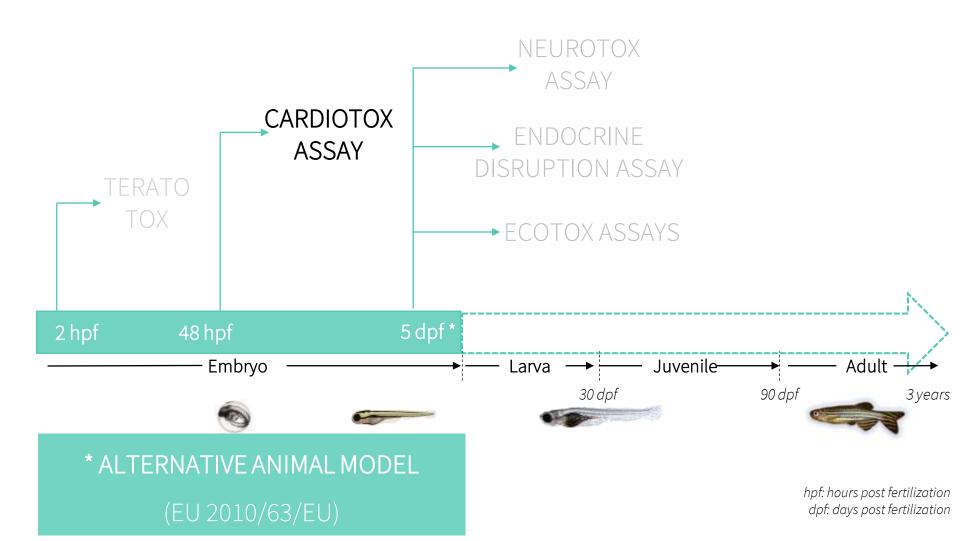

Phenotypic-based screening assay for the evaluation of developmental toxicity.

Morphological endpoints related to the development of major organs and body structures.

Test	0.0000	AEL M)	EC50	(μM)	LC50	(µM)	т	1		LEL	(µM)
item	2 dpf	4 dpf	2 dpf	4 dpf	2 dpf	4 dpf	2 dpf	4 dpf		Nominal	Interna
BDE47*	>25	2	-	12.01 (8.44 to 17.11)	iπ.	>25	-	>2.08		4	1040
BPDP	8	4	11.45 (10.56 to 12.42)	4.75 (0.086 to 263.1)	84.15 (80.72 to 87.72)	15.24 (12.33 to 18.84)	7.35	3.21	-	8	1222
EHDP	>20	3	-	5.06 (4.89 to 5.24)		9.78 (Very wide)	-	1.93	ratior	5	2880
IDDP*	>150	20	-	77.23 (57.77 to 103.2)	(H):	>150	-	>1.94	concentration	40	665.1
IPP	1	<1	4.30 (3.66 to 5.05)	1.80 (1.31 to 2.47)	>100	12.82 (11.97 to 13.73)	>23.26	7.12	-	1	4.21
тмрр	8	2	11.48 (11.40 to 11.56)	3.00 (2.78 to 3.24)	143.8 (107.2 to 192.9)	9.52 (9.46 to 9.57)	12.53	3.17	Internal	4	1078
трнр	2	1	3.84 (3.41 to 4.33)	1.72 (1.61 to 1.84)	15.11 (very wide)	5.15 (Interrupted)	3.93	2.99	II	1.5	335.2
тввра	1.5	1	1.81 (1.76 to 1.86)	1.48 (Very wide)	3.26 (Very wide)	1.90 (1.88 to 1.92)	1.80	1.28		1.5	20.68
TCEP	400	400	521.2 (462.8 to 587.0)	415.2 (Very wide)	>1000	977.6 (Very wide)	>1.92	2.35		600	342.7
TDCIPP	3	2	4.11 (3.68 to 4.58)	3.08 (2.79 to 3.40)	8.29 (7.15 to 9.61)	6.53 (5.07 to 8.40)	2.02	2.12		3	76.68

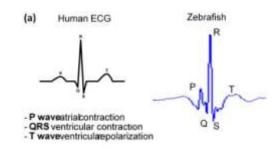
Exposure concentration assessment

The **internal concentration** can be **determined** with the appropriate analytical methods in order to **discard false negatives/positives**.

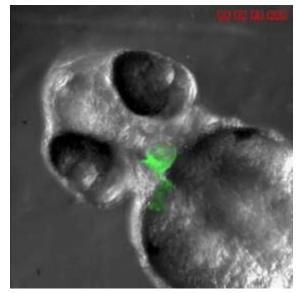

Substance	Classification	BIOBIDE Classification
Aflatoxin A	Teratogenic in rodents	POSITIVE
Acetaminophen	Moderate risk teratogen	NEGATIVE
Dexamethasone	Teratogenic	POSITIVE
Tetracycline	Teratogenic	POSITIVE
Penicillin G	Non-Teratogenic	NEGATIVE
Warfarin	Teratogenic	POSITIVE
Chlorambucil	Teratogenic	POSITIVE
5-Fluorouracil	Teratogenic	NEGATIVE
Thalidomide	Teratogenic	NEGATIVE
Hydroxyurea	Teratogenic	NEGATIVE
Amiodarone	Teratogenic	POSITIVE
Sotalol	Non-Teratogenic	NEGATIVE
Acebutolol	Non-Teratogenic	NEGATIVE
Carbamazepine	Teratogenic	POSITIVE
Valproic Acid	Teratogenic	POSITIVE
Pilocarpine	Non-Teratogenic	NEGATIVE
Tacrine	Teratogenic	POSITIVE
Testosterone	Teratogenic	POSITIVE
Norepinephrine	Teratogenic	POSITIVE
Hydrocortisone	Teratogenic	POSITIVE
Ascorbic acid	Non-Teratogenic	NEGATIVE
Retinol	Teratogenic	POSITIVE
N-Acetyl-Cysteine	Non-Teratogenic	NEGATIVE
Sucrose	Non-Teratogenic	NEGATIVE
Retinoic Acid	Teratogenic	POSITIVE

Substance	Classification	BIOBIDE Classification
Difenoconazole	Non-teratogenic in animal experiments	NEGATIVE
Epoxiconazole	Teratogenic	POSITIVE
Flusiloazole	Teratogenic	POSITIVE
Cyclopamine	Teratogenic in animal experiments	POSITIVE
Myclobutanil	Teratogenic	POSITIVE
Metconazole	Teratogenic	POSITIVE
Propiconazole	Developmental toxicity in rats	POSITIVE
Ipconazole	Developmental toxicity in rat and rabbit	POSITIVE
Penconazole	Not development toxicity in rat and rabbit	NEGATIVE
Diniconazole	Development toxicity in rats and not in rabbits	POSITIVE
Voriconazole	Teratogenic in rats (not in rabbits)	POSITIVE
Glycolic Acid	Teratogenic	NEGATIVE
Camphor	Non-teratogenic	NEGATIVE
Dimethyl phthalate	Teratogenic	POSITIVE
Levothyroxine	Non-Teratogenic	POSITIVE
Metoclopramide	Non-teratogenic	NEGATIVE
Saccharin	Non-teratogenic	NEGATIVE
Tetrabromobispheno I A	Non-teratogenic	NEGATIVE
Caffeine	Teratogenic	POSITIVE
Ramelton	Teratogenic	POSITIVE

Drugs with different human therapeutic indications were tested for the **validation study**

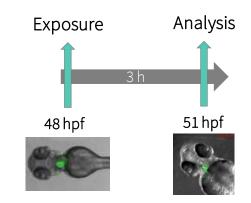

POSITIVE NEGATIVE FALSE NEGATIVE FALSE POSITIVE

Zebrafish Toxicity Assays

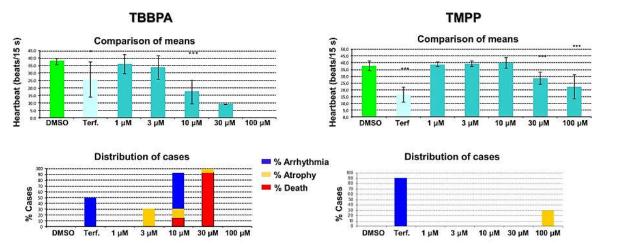


Organ-specific assays Cardiotox

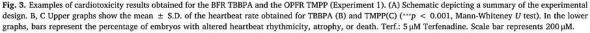
- Bicameral heart (one atrium, one ventricle)
- ECG pattern similar to human
- Voltage-gated Na channels
- L&T-type Ca channels
- K Channels
- Embryos can survive up to 5 pdf days without circulation
- Zebrafish tg(mlc2a::copGFP) strain expressing green fluorescent protein (GFP) in the heart



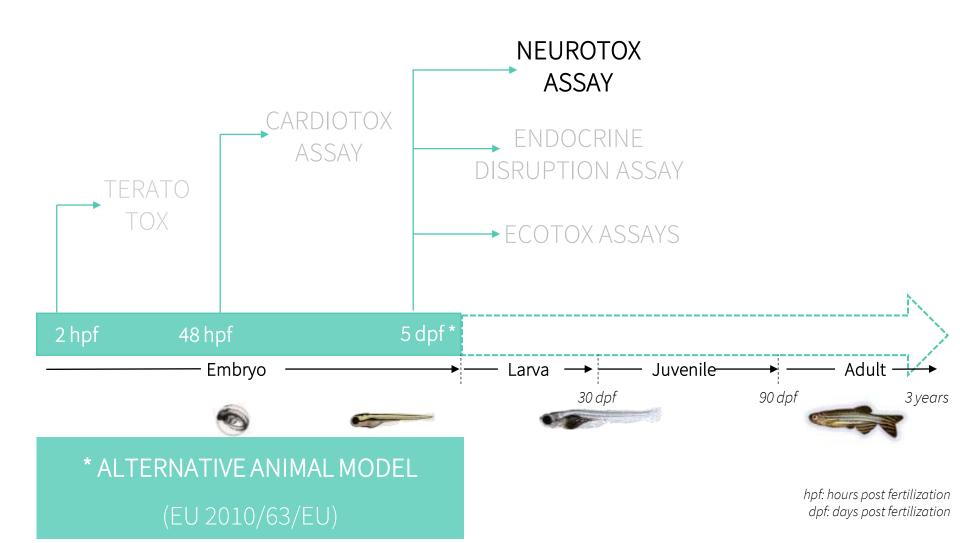
Yu et al. 2011. Biomedical Microdevices.

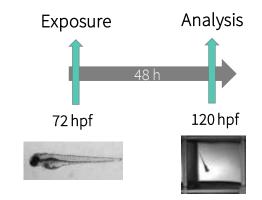

72 hpf zebrafish embryo. Biobide

Organ-specific assays Cardiotox

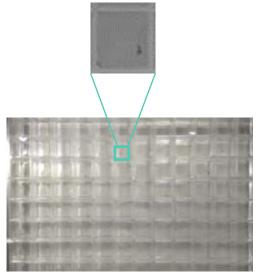


Microscopy video recording and automatic assessment of cardiac movements.

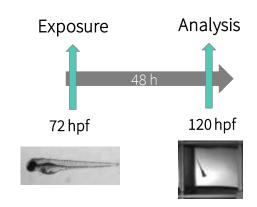

Automatic detection of heartrate, arrhythmia, bradycardia, and cardiac arrest caused by cardiotoxicity of the test substances


Test item	Cardiotoxicity			
	Effect	LEL (µM)		
BDE47	Not detected	-		
	(30 µM)			
BPDP	Bradycardia/	10		
	Atrial failure			
EHDP	Bradycardia	30		
IDDP	Bradycardia	100		
IPP	Bradycardia/	100		
	Atrial failure			
TMPP	Bradycardia/	30		
	Atrial failure			
TPHP	Bradycardia/	10		
	Atrial failure			
TBBPA	Arrhythmia/	3		
	Ventricular failure			
TCEP	Not detected	-		
TDCIPP	Not specific	-		

Zebrafish Toxicity Assays


Organ-specific assays Neurotox

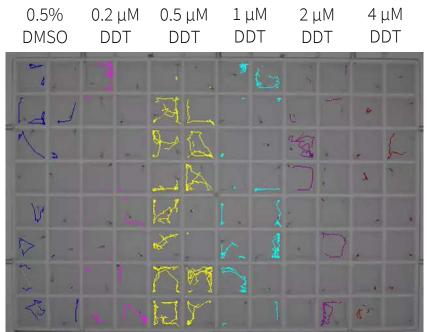
Behavior tracking and analysis of zebrafish embryos alternating light/dark periods. Assessment of neuroactive/neurotoxic activity of test compounds.

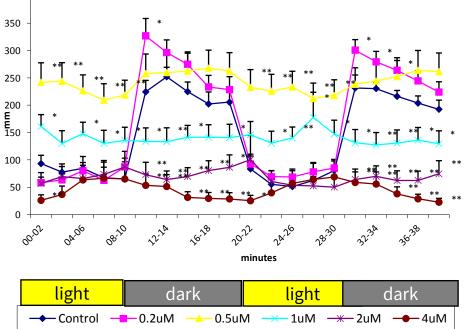

Measured variables:

- ✓ Distance
- Rotation
- Maximum and mean velocity
- Movement Duration & Frequency
- Distance moved at high velocity
- Mobile and Highly mobile Duration & Frequency
- Ratio of peripheric distance vs. total distance moved in the well

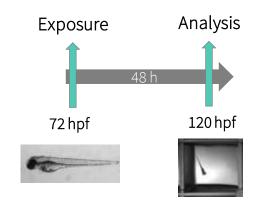
Screening on 96 well-plates

Organ-specific assays Neurotox




Tracking of embryo exposed to DDT

Concentration dependent effects:


400

• Higher concentration, lower locomotor activity

Organ-specific assays Neurotox

Tracking of embryo exposed to DDT

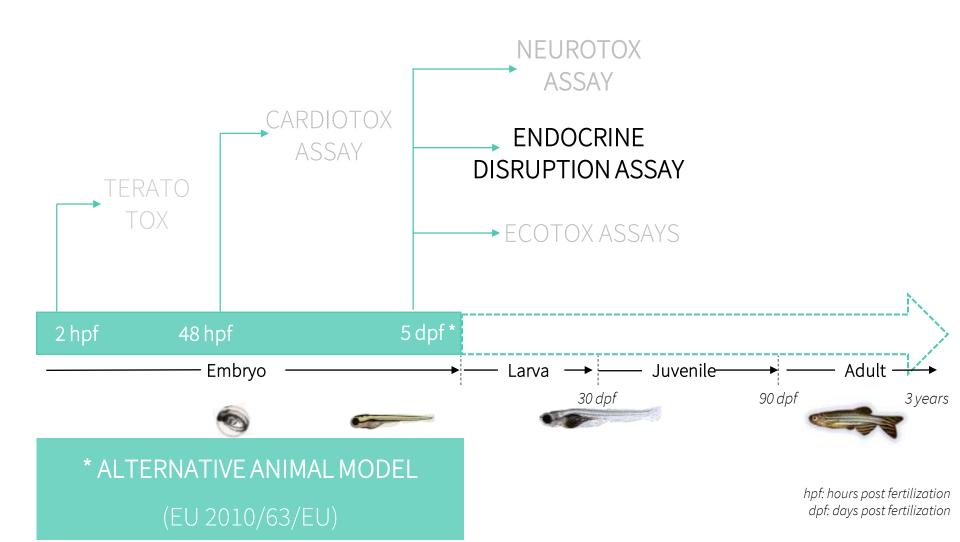
Concentration dependent effects:

• Higher concentration, lower locomotor activity

.5% 0.2 μM Test item	Behavior alteration		
ISO DDT	Effect	LEL (µM)	_* _{∓∗} ⊺
BDE47*	Reduced activity		
/ BPDP	*Reduced activity/toxic	10	
EHDP	Hyperactivity	10 T ** T T *-	∗ग*ग
IDDP*	Reduced activity	80	**
n IPP	Not detected	- + I + *E	**
TMPP	Not detected		₹ <u>*</u> *
TPHP	*Reduced activity/toxic	2	
ТВВРА	Not detected		
TCEP	*Reduced activity/toxic	- ° ° ° ° °	36 ^{.36}
TDCIPP	Not detected	200	
	a second s	dark light	dark
1 177		U U U U U U U U U U U U U U U U U U U	
		$-0.2uM \longrightarrow 0.5uM \longrightarrow 1uM \longrightarrow 2uN$	

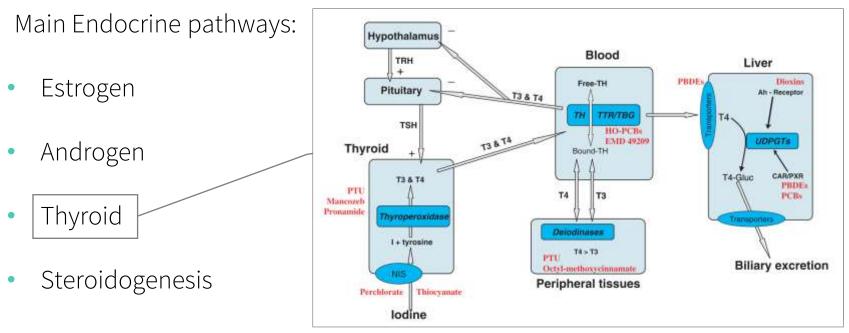
Organ-specific assays Neurotox

COMPOUND	Therapeutic Classification	Adverse effects in human CNS	Results
5-Fluorouracil	Antineoplasic-cytotoxic	-	TN
Acetaminophen	Analgesic-Antipyretic	-	TN
Acetylcysteine	Mucolytic	-	TN
Artemisinin	Antimalaric	+	TP
Ascorbic Acid	Antioxidant	-	TN
Carbamazepine	GABA enhancing anxiolytic	+	TP
Chlorambucil	Alkylatingantineoplastic	+	TP
Chloroquine	Antimalaric	+	TP
Dexamethasone	Anti-inflammatory	+	FN
Dieldrin	GABA receptors antagonist	+	TP
Disopyramide	Anti-arrhythmic	+	TP
Dopamine	Neurotransmitter	-	ΤN
Fluoxetine	SSRI antidepressant	+	TP
Foscarnet	Antiviral	+	TP
Halofantrine	Antimalaric	+	TP
Haloperidol	Antipsychotic	+	TP
Indirubin-3'- oxime	CDKs and GSK3β inhibitors	+	TP
Mefloquine	Antimalaric	+	TP
MPTP	Neurotoxin	+	TP
Norepinephrine	Hormone / Neurotransmitter	-	TN
PTZ	GABA antagonist	+	TP
Sotalol	Anti-arrhythmic	-	TN
Sucrose	Negative control	-	TN
Tacrine	Anticholinesterase	+	TP
Tetracycline	Antibiotic	+	TP
Thalidomide	Immunomodulatory	+	TP
Valproic Acid	Anticonvulsant	+	TP
Warfarin	Anticonvulsant	-	TN

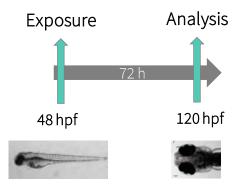

TP: true positive

TN: true negative

FP: false positive

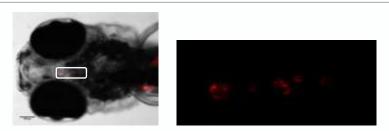

FN: false negative

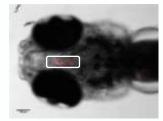
Zebrafish Toxicity Assays

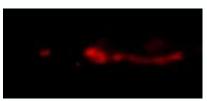

Endocrine Disruption Assay Thyroid Pathway

Endocrine disruptors are one of the most significant hazards in environmental risk assessment of chemicals.

Crofton el al. Int. J. Androl. 2008

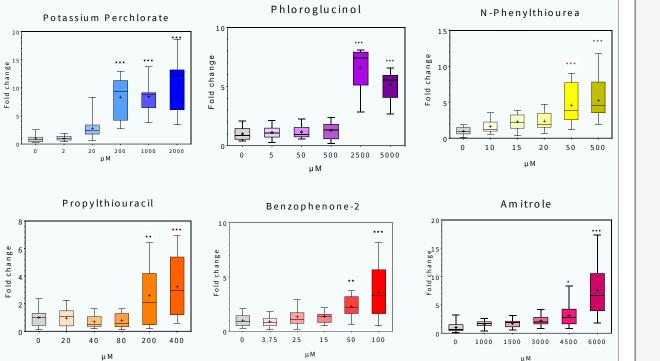

Endocrine Disruption Assay Thyroid Pathway


Tg(tg:mcherry) transgenic line: mCherry fluorescence expression driven by the promoter of thyroglobulin (*tg*) gene.


EXPERIMENTAL DESIGN

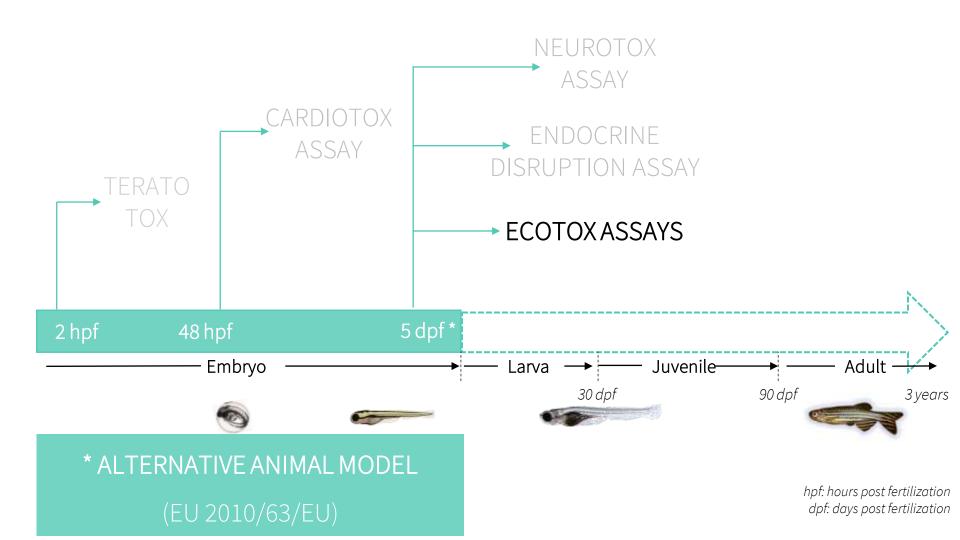
- Exposure from 48 hpf to 120 hpf.
- 5 concentrations per compound.
- 20 embryos per condition.
- Fluorescence intensity assessment by image analysis.

tg(tg:mcherry) Control embryo


tg(tg:mcherry) embryo exposed to 200 μM KClO₄

Thyroid Pathway

Reference TD chemicals (+ controls)


- Concentration-dependent fluorescence increase.
 - = Induction of thyroglobulin expression

Non-TD chemicals (- controls) No fluorescence induction at any concentration.

Zebrafish Toxicity Assays

Ecotox Assays

Regulatory Assays

- ✓ OECD TG203. Fish Acute Toxicity Test in adults
- ✓ OECD TG204: Fish 14-Day Prolonged Toxicity Test
- ✓ OECD TG210: Fish, Early-life Stage Toxicity Test
- ✓ OECD TG215: Fish Juvenile Growth Test
- ✓ OECD TG212: Fish Short-term Toxicity Test on
 - Embryo and Sac-fry Stages
- ✓ OECDTG229: Fish Short Term Reproduction Assay
- ✓ OECD TG236: Fish Embryo Acute Toxicity (FET) Test

Early-Phase Assays

- Zebrafish Larvae Acute Toxicity Test
- Sperm Quality Assessment in Adult Zebrafish
- ✓ Algae Toxicity Test in Microplate Format
- ✓ Daphnia magna Immobilization Assay

Conclusions

 The rapid development, cost-efficiency and high homology with higher vertebrates makes the zebrafish a suitable biological model for toxicologic and environmental risk assessment studies.

 The use of zebrafish model in the process of toxicological profile analysis of new candidates could speed up the toxicity screening process while decreasing the cost.

Merci beaucoup

Muchas gracias

Thank you

Biobide Spain Gipuzkoa Scientific & Technological Park P^o Mikeletegi 56 , 20009 San Sebastián, Spain.

Biobide USA One Broadway, 14th floor Cambridge, MA 02142, USA.

